Mark scheme - The Halogens

Question		Answer/Indicative content	Marks

					Further guidance can be found in the AS Level delivery guide 'Theme: Patterns’ (Group 2 and Group 17): https:/www.ocr.org.uk/Images/231740patterns.pdf
	b		Benefit AND risk required for ONE mark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	ALLOW kills micro-organisms OR kills pathogens OR kills viruses OR sterilises/disinfects water IGNORE antiseptic, reduces risk of disease, cleans water IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous for health/causes breathing problems
			Total	6	
2		i	Sodium bromate(V) \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.5 \times 1) \end{gathered}$	Examiner's Comments Very few candidates scored this mark. Although a number of candidates did give sodium bromate as the answer (with the omission of the oxidation state), many other answers were seen suggesting candidates are not aware of naming conventions for inorganic compounds.
		ii	Br is oxidised AND reduced OR Br oxidation number is increased and decreased \checkmark Br is oxidised from 0 to $+5 \checkmark$ Br is reduced from 0 to $-1 \checkmark$	$\begin{gathered} 3 \\ (\mathrm{AO} 1.1 \times 1) \end{gathered}$ (AO2.2×2)	ALLOW same element is both oxidised and reduced ALLOW 1 mark if all 3 oxidation numbers are correct (even if oxidation/reduction incorrectly assigned) Examiner's Comments This is the first time in a reformed chemistry AS paper that the question space has been left unstructured for oxidation number changes. The highest-attaining candidates set out their responses clearly, dealing with changes for oxidation and reduction separately, and giving the correct oxidation numbers. Some struggled to obtain an oxidation state of Br in NaBrO_{3} as +5 , suggesting +1 instead.
			Total	4	
3			Electrons (down group) number of electrons increases \checkmark	$\begin{gathered} 3 \\ (\mathrm{AO} 1.1 \times 3) \end{gathered}$	FULL ANNOTATIONS MUST BE USED \qquad ALLOW more electron shells

					not for different boiling points. The contrast in the clarity of low- and high-attaining candidate responses was particularly pronounced for this question.
			Total	3	
4			ASSUME trend is down the group (unless stated otherwise) Forces London forces increase OR induced dipole(-dipole) interactions increase $\sqrt{ }$ Reason (Number of) electrons increases \checkmark Link to energy and particles More energy to break intermolecular forces OR to break London forces OR to break induced dipole(-dipole) interactions \checkmark	3	FULL ANNOTATIONS MUST BE USED \qquad ALLOW reverse argument throughout IGNORE van der Waals'/vdW forces DO NOT ALLOW hydrogen bonds OR permanent dipole(-dipole) interactions for first and third marking points ALLOW more (electron) shells DO NOT ALLOW covalent bonds break Examiner's Comments Most candidates realised that as the group is descended, each molecule has more electrons, resulting in stronger London forces (or greater induced dipole-dipole interactions), which require greater energy to overcome. Common errors included describing the intermolecular forces as van der Waals' forces or permanent dipoles; stating that more energy is needed to overcome bonds (there are covalent bonds in these molecules) having previously used the term forces or interactions; and relating boiling point to reactivity based upon ease of electron loss due to differences in nuclear attraction.
			Total	3	
5	a	i	Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced \checkmark Oxidation from $\mathbf{0}$ to $\mathbf{+ 1}$ in $\mathrm{HIO} \checkmark$ Reduction from $\mathbf{0}$ to $\mathbf{- 1}$ in $\mathbf{~ H I ~} \checkmark$	3	ALLOW I or I_{2} for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for - 1 AND $1+$ for +1 NOTE (for iodine $/ I_{2}$) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: $0 \text { in } \mathrm{I}_{2} \text { AND -1 in } \mathrm{HI} \text { AND +1 in HIO }$

 (

7		i	Disproportionate: oxidation and reduction of the same element $\sqrt{ }$ Redox: Cl is oxidised from $+5\left(\right.$ in $\left.\mathrm{KC} / \mathrm{O}_{3}\right)$ to +7 (in $\mathrm{KC} / \mathrm{O}_{4}$) \downarrow Cl is reduced from +5 (in $\mathrm{KC} / \mathrm{O}_{3}$) to -1 (in KCl) $\sqrt{ }$	3	ALLOW 'chlorine' OR 'Cl' for same element IGNORE 'species' for 'element' ALLOW after number, e.g. 5+ IGNORE ionic charges, e.g. C/ ${ }^{+}$ IGNORE '5' (signs required) IGNORE any reference to electron loss / gain (even if wrong) ALLOW one redox mark if oxidation numbers are correct but reduction / oxidation is incorrectly assigned Examiner's Comments The question asked candidates to state what disproportionation meant. Many candidates failed to give this statement, despite correctly identifying the change in oxidation number and correctly assigning the redox terms.
		ii	potassium chlorate(VII) \checkmark	1	Brackets required Examiner's Comments It was apparent that the idea of systematic naming of compounds was not known by many candidates. Of those who realised that Roman numerals were required, many showed uncertainty of the identity of the Roman numeral to be used or positioned the numeral at an inappropriate place within the name of the compound.
			Total	4	
8	a	i	Silver nitrate $\mathrm{OR}^{\text {AgNO}} 3 \checkmark$	1	ALLow Ag^{+} IF name correct, IGNORE an incorrect formula IGNORE acidified/ $/ \mathrm{HNO}_{3}$ Examiner's Comments Most candidates responded correctly with either the name of the reagent: silver nitrate, or its formula: AgNO_{3}.
		ii	Chloride: white (precipitate) AND Bromide: cream (precipitate) AND iodide: yellow (precipitate) \checkmark	1	All three required for the mark Examiner's Comments The colours of the silver halide precipitates

				were well known and very few candidates failed to score here. Where mistakes were made, it was to put the three colours in the wrong order or to show the colours of halogens in solution.
	b i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \checkmark$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}-$ there may be a mistake	1	ALLOW 3d after $4 \mathrm{~s}^{2}$ or after $4 \mathrm{p}^{6}$, e.g. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$ ALLOW upper case D, etc and subscripts, e.g. $4 \mathrm{~S}_{2} 3 \mathrm{D}_{1}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. When incorrect, it was usually for giving the configuration of a bromine atom rather than a bromide ion, or the subtraction of an electron rather than addition giving $4 \mathrm{p}^{4}$.
	ii	$\mathrm{Cl}^{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2} \checkmark$ Chlorine/ $\mathrm{Cl}_{1} / \mathrm{Cl}_{2}$ is more reactive/stronger oxidising agent OR reactivity decreases down group \checkmark	2	ALLOW multiples, e.g. $1 / 2 \mathrm{Cl}_{2}+\mathrm{Br}^{-} \rightarrow \mathrm{Cl}^{-}+1 / 2$ Br_{2} IGNORE state symbols ALLOW bromine is less reactive IGNORE explanation in terms of electronegativity Examiner's Comments Most candidates identified that chlorine was the more reactive element, although a significant number responded in terms of electronegativity. More commonly, it was the equation that was incorrect, usually unbalanced or with bromine reacting instead of chlorine.
	C	Benefit AND risk required for mark Benefits: kills OR removes bacteria AND Risk: toxic/poisonous OR forms chlorinated hydrocarbons OR forms carcinogens/toxic compounds \checkmark	1	ALLOW kills germs OR kills micro-organisms OR kills pathogens OR sterilises/disinfects OR makes water potable/ safe to drink OR purifies water IGNORE antiseptic, reduces risk of disease, cleans water ALLOW reduces risk of water-born diseases, e.g. cholera/typhoid/dysentery IGNORE 'harmful'/'dangerous' IGNORE chlorine is carcinogenic/ dangerous

				for health/causes breathing problems Examiner's Comments Most candidates scored this mark by stating a benefit (usually 'kills bacteria') and a risk (usually 'toxic' or 'forms carcinogenic compounds'). Vaguer terms such as 'harmful', 'can make you ill', etc, were not credited.
		Total	6	
9		M1 Mixing of first pair of solutions Adding (aqueous) barium chloride to bromine (water) OR $\mathrm{BaCl}_{2}+\mathrm{Br}_{2}$ M2 Mixing of second pair of solutions Adding (aqueous) calcium iodide to bromine (water) $\mathrm{OR} \mathrm{Cal} 2+\mathrm{Br}_{2}$ OR Adding aqueous magnesium bromide to aqueous iodine OR $\mathrm{MgBr}_{2}+\mathrm{I}_{2}$ M3 Colours in cyclohexane Colour for M1 is orange OR yellow AND Colour for M2 is purple OR violet OR mauve OR pink OR lilac M4 lonic equation mark $\mathrm{Br}_{2}+2 \mathrm{I}--->\mathrm{I}_{2}+2 \mathrm{Br}-$ M5 Use of M1 and one of M2 as only two experiments	5	For M1 and M2 ALLOW any halide for the named halides in the question eg 'potassium chloride' for barium chloride 'potassium bromide' DO NOT ALLOW 'barium chlorine/BaCl' 'calcium iodine/Cal' 'magnesium bromine $/ \mathrm{MgBr}^{\prime}$ as the halide DO NOT ALLOW 'bromide' for 'bromine' OR 'iodide' for 'iodine' M1 can be seen anywhere M2 could be awarded from a correct ionic equation in M4 M2 can be seen anywhere If both M 2 tests and M 1 are given, this will nullify M5 M3 is given for the correct resultant colour of pairs of solution given in M1 and M2. If both possible pairs of solutions in M2 are given, both colours must be correct. IGNORE colours of other combinations of solutions IGNORE colours in the aqueous layer if stated DO NOT ALLOW other colours for M1 and M2 (eg iodine is brown) M4 can be awarded anywhere M4 also scores M2 if not already awarded ALLOW multiples IGNORE state symbols IGNORE $\mathrm{I}_{2}+2 \mathrm{Br}_{-}-->\mathrm{I}_{2}+2 \mathrm{Br}_{-}$ IGNORE $\mathrm{Br}_{2}+2 \mathrm{Cl}-->\mathrm{Br}_{2}+2 \mathrm{Cl}$ DO NOT ALLOW other ionic equations DO NOT ALLOW if more than two experiment are attempted even if pointless eg 'barium chloride + calcium iodide' Place the 'tick' for M5 against the sub-total mark, [5], at the bottom right hand side of the answer space

					Examiner's Comments Able candidates were able to provide full answers involving only two reactions, one ionic equation and correct colours of products in succinct form. Some candidates answered the question correctly then ignored the instruction to keep the number of reactions to a minimum and gave an unnecessary third confirmatory reaction. This question distinguished well for many weaker candidates were unable to produce chemically coherent responses. Suggestions for 'impossible' reactions such as adding magnesium bromide to calcium iodide were frequently seen from such candidates.
			Total	5	
10		i	Equation $2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ Conditions cold AND dilute (sodium hydroxide) \checkmark	2	ALLOW correct multiples IGNORE state symbols ALLOW room temperature $\mathrm{OR} \leq 20^{\circ} \mathrm{C}$ for cold Examiner's Comments This question was perhaps not as well answered as it might have been and although some candidates had memorised the equation that was needed here, many clearly had not and more alarmingly such candidates were then content to suggest equations which were chemical nonsense. It was very uncommon indeed to see candidates pick up the second mark for giving the correct conditions required to form bleach from chlorine, with few realising that as well as being cold, the $\mathrm{NaOH}(\mathrm{aq})$ needs to be dilute.
		ii	Definition of disproportionation mark M1 (Disproportionation) is the (simultaneous) oxidation and reduction of the same element (in the same redox reaction) \checkmark M2 Assigning of oxidation numbers Cl in Cl_{2} is 0 AND Cl in NaCl is -1 AND Cl in NaClO_{3} is $+5 \checkmark$	3	ALLOW 'an element' OR 'a species' for 'the same element' Assume 'it' means disproportionation M1 can be awarded for 'chlorine is oxidised and reduced and this is disproportionation' ALLOW oxidation numbers written above the equation if not seen in the text but IGNORE oxidation numbers written above the equation if seen in the text ALLOW 1- AND 5 AND 5+ DO NOT ALLOW chloride in place of chlorine

			Chlorine has been oxidised from 0 to +5 AND Chlorine has been reduced from 0 to -1 \checkmark 'Chlorine has been oxidised from 0 in Cl_{2} to +5 in NaClO_{3} and chlorine has been reduced from 0 in Cl_{2} to -1 in NaCl ' would secure M 2 and M 3 This diagram, along with a correct definition, would secure all three marks.		except for NaCl DO NOT ALLOW Cl- in NaCl AND Cl^{5+} in NaClO_{3} (ie do not allow ionic charges for oxidation numbers) ALLOW CI OR Cl 2 for chlorine DO NOT ALLOW M2 if incorrect oxidation numbers of other elements are seen in the text eg H = +2 ALLOW ECF for third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg $\mathrm{Cl}=0$ and -1 and +3 instead 0 and -1 and +5 DO NOT ALLOW ECF if two oxidation numbers are incorrectly assigned IGNORE references to electron loss / gain If oxidation numbers are correct ALLOW third mark for: chlorine is oxidised to form NaClO_{3} AND chlorine is reduced to form NaCl Examiner's Comments The concept of disproportionation has been tested before and candidates were able to address this part of the question successfully. Weaker candidates met problems in assigning the oxidation numbers and in particular the Cl in NaClO^{3} was frequently misassigned as +1 . Another frequent mistake was to identify that both oxidation and reduction had taken place, but not to say which changes in the oxidation numbers of which species corresponded to each of these processes. A large number of candidates relied for one of their marks on the examiner marking their working shown above the equation. It should be stressed that a complete answer should aim to restate these key assignments of oxidation numbers within the text.
			Total	5	
11		i	$\mathrm{NaClO}+2 \mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$ correct formulae of reactants, NaCl and chlorine (1) water and balancing (1)	2	allow $\mathrm{NaC} / \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow \mathrm{NaCl}+3 \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ for 1 mark
		ii	Test: add (a few drops of aqueous) silver nitrate (1)	2	ignore addition of dilute nitric acid before the AgNO_{3}

			Result: white ppt (1)		ignore redissolving in excess NH_{3} or darkening of the ppt
		iii	separating funnel (1)	1	allow dropping pipette
			Total	5	
12		i	(1s2) $2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \checkmark$	1	ALLOW ... $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6}$ ALLOW subscripts AND 3D IGNORE $1 \mathrm{~s}^{2}$ seen twice Examiner's Comments Most candidates were awarded the mark available for the electron configuration of the bromide ion, but weaker responses included the electronic configuration of a bromine atom or of the ion, Br^{+}.
		ii	Cream AND precipitate \checkmark	1	ALLOW solid OR ppt for precipitate IGNORE 'does not dissolve' OR 'partially dissolves' Examiner's Comments Many candidates focused exclusively in their answers on the solubility of silver bromide in aqueous ammonia, writing as a result that the precipitate would remain, or that it would not dissolve and so not gaining the mark by omitting the colour of the precipitate.
		iii	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s}) \checkmark$	1	Equation AND state symbols required Examiner's Comments The majority of candidates answered this question successfully with the only recurring error made being to omit some or all of the state symbols.
			Total	3	
13	a	i	(The solution would turn) yellow OR orange OR brown \checkmark	1	ALLOW shades and colours (eg dark yellow, yellow-orange) DO NOT ALLOW 'purple’ Examiner's Comments The lack of correct responses suggested that candidates may not have met this simple experiment. Centres are advised to use a practical approach in their teaching wherever possible. The most common error here was to suggest that the solution would turn purple.

3.1.3 The Halogens

	ii	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{l}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \checkmark$	1	ALLOW multiples State symbols required ALLOW Cl2 $(a q)$ Examiner's Comments The equation was correct in the majority of responses but the mark was lost by candidates due the state symbols not being included in their answer. Where state symbols were present it was very common to see I_{2} given as a (g) rather than (aq). The reason for this is not clear but perhaps it stems from Cl_{2} being (g) in the reactants.
	b	$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols ALLOW OH ${ }^{-}$and ClO^{-}, i.e. $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW NaOCI Examiner's Comments This equation was directly from the specification and candidates were familiar with it. Errors in balancing were rare.
		Total	3	

